JEE Advanced Syllabus 2022 for Chemistry


JEE Advanced Syllabus 2022 for Chemistry – A work which starts off well, also ends well. First step towards JEE preparation is to know the syllabus for JEE Advanced. The JEE Advanced 2022 syllabus for Chemistry is given here in PDF format. Candidates preparing for the upcoming Joint Entrance Examination (Advance) must study all the topics given in the syllabus. The syllabus is prepared by the exam conducting IIT and is published on

JEE Advanced Syllabus 2022 for Chemistry

Chemistry subject in JEE Advanced has the lengthiest syllabus. Questions are asked in the exam from Physical, organic and inorganic chemistry. The eligiblecandidaes for the exam and check must note tocover all the topics in the syllabus.

Exam Name  Joint Entrance Examination (JEE) Advance
 Resource  Syllabus
 Subject  Chemistry
 Applicable for  Year 2021 and Year 2022

There are a total of 11 topics in physical chemistry, 7 in inorganic chemistry, and 10 in the organic chemistry section of the syllabus. Thus a total of 28 topics are covered in the JEE Advanced syllabus 2022 for Chemistry. To download the PDF file of the syllabus access the direct link below. Get the complete syllabus here –

Physical chemistry

General topics
Concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality.

Gaseous and liquid states
The absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion
of gases.

Atomic structure and chemical bonding
Bohr model, spectrum of hydrogen atom, quantum numbers; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

First law of thermodynamics; Internal energy, work and heat, pressure-volume work; Enthalpy, Hess’s law; Heat of reaction, fusion and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.

Chemical equilibrium
Law of mass action; Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure); Significance of ΔG and ΔG0
in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.

Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.

Chemical kinetics
Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).

Solid state
Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic compounds, point defects.

Raoult’s law; Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.

Surface chemistry
Elementary concepts of adsorption (excluding adsorption isotherms); Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).

Nuclear chemistry

isotopes and isobars; Properties of α, β and γ rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.

Inorganic chemistry – Isolation/preparation and properties of the following non-metals Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

Preparation and properties of the following compounds – Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminum: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid
(carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.

Transition elements (3d series) – Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cistrans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).

Preparation and properties of the following compounds – Oxides and chlorides of tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.

Ores and minerals – Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.

Extractive metallurgy – Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).

Principles of qualitative analysis – Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.

Organic chemistry

– Hybridisation of carbon; σ and π-bonds; Shapes of simple organic molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto-enol tautomerism; Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.

Preparation, properties and reactions of alkanes – Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.

Preparation, properties and reactions of alkenes and alkynes – Physical properties of alkenes and alkynes (boiling points, density and dipole moments);
Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X2, HX, HOX and H2O (X=halogen); Addition reactions of alkynes; Metal acetylides.

Reactions of benzene – Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.

Phenols – Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.
Characteristic reactions of the following (including those mentioned above) Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions,
nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers: Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions
of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).

Carbohydrates – Classification; mono- and di-saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.
Amino acids and peptides General structure (only primary structure for peptides) and physical properties. Properties and uses of some important polymers
Natural rubber, cellulose, nylon, teflon and PVC.

Practical organic chemistry – Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical methods of separation of mono-functional organic compounds from binary mixtures.

JEE Advanced 2022 Syllabus for Other Subjects

Candidates can also check the syllabus of Physics, Maths and AAT from the links below:

Topics in JEE Advanced Syllabus 2022 for Chemistry

The topics that are included in the JEE Advanced syllabus 2022 for chemistry are given below:

Physical Chemistry

  1. General topics
  2. Gaseous and liquid states
  3. Atomic structure and chemical bonding
  4. Energetics
  5. Chemical equilibrium
  6. Electrochemistry
  7. Chemical kinetics
  8. Solid state
  9. Solutions
  10. Surface chemistry
  11. Nuclear chemistry

Inorganic Chemistry

  1. Isolation/preparation and properties of the following non-metals
  2. Preparation and properties of the following compounds
  3. Transition elements (3d series)
  4. Preparation and properties of the following compounds
  5. Ores and minerals
  6. Extractive metallurgy
  7. Principles of qualitative analysis

Organic Chemistry

  1. Concepts
  2. Preparation, properties and reactions of alkanes
  3. Preparation, properties and reactions of alkenes and alkynes
  4. Reactions of benzene
  5. Phenols
  6. Characteristic reactions of the following (including those mentioned above)
  7. Carbohydrates
  8. Amino acids and peptides
  9. Properties and uses of some important polymers
  10. Practical organic chemistry

Weightage of Topics in JEE Advanced Syllabus 2022 for Chemistry

The candidates can check below the topics from where most of the questions are framed in the exam more or less every year.

Inorganic Chemistry Topics
S ,P, D block & hydrogen and its compound 14% to 15%
Metallurgy and SLAT analysis 5% to 6%
Organic Chemistry Topics
Aromatic Hydrocarbon 5% to 6%
Carbonyl Compounds 4% to 5%
Physical Chemistry Topics
Atomic Structure 8% to 9%
Chemical Kinetics and Radioactivity 8% to 9%

Important Tips to Cover JEE Advanced Syllabus 2022 for Chemistry

Here some tips to cover the longest syllabus of JEE Advanced exam efficiently:

By heart the Periodic Table

Before starting thesyllabus of Chemistry subject, ensure that you have learnt the periodic table and is familiar with all the elements listed on it.

Inorganic must be covered every day for 1 hour

The toppers suggest that the inorganic part of the syllabus must be covered each day. Otherwise, the syllabus cannot be covered efficiently and one or more topics are left at the end.

1 hour every day for Organic Chemistry Formulas and Reactions

By heart the important reactions. The name of the reactions must be on the tip of the tongue. Also, the candidates must not just by heart the important reactions, but also understand every aspect of forming a reaction. The exam may have unexpected questions that can be only solved by the students wh understand. Therefore organic chemistry formulas and reactions must be covered every day for 1 hour too.

Physical Chemistry must be understood

The physical part of the chemistry subject is not meant to be just learned. The concepts and theory of the topics in this section of the syllabus need understanding and grasp of concepts. The numerical part of this section can be only solved if the concepts are clear. Thus every day dedicate 1 hour for physical chemistry numerical too.

Other Preparation Resources for JEE Advanced 2022

The candidates can check below some other important recources for preparation of JEE Advanced 2022:

JEE Advanced Syllabus

To get fastest exam alerts and government job alerts in India, join our Telegram channel.

Thank You for visiting

Leave a Reply

Your email address will not be published.